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Sen, Kamal, Frédéric E. Theunissen, and Allison J. Doupe.Feature
analysis of natural sounds in the songbird auditory forebrain.J Neu-
rophysiol86: 1445–1458, 2001. Although understanding the process-
ing of natural sounds is an important goal in auditory neuroscience,
relatively little is known about the neural coding of these sounds.
Recently we demonstrated that the spectral temporal receptive field
(STRF), a description of the stimulus-response function of auditory
neurons, could be derived from responses to arbitrary ensembles of
complex sounds including vocalizations. In this study, we use this
method to investigate the auditory processing of natural sounds in the
birdsong system. We obtain neural responses from several regions of
the songbird auditory forebrain to a large ensemble of bird songs and
use these data to calculate the STRFs, which are the best linear model
of the spectral-temporal features of sound to which auditory neurons
respond. We find that these neurons respond to a wide variety of
features in songs ranging from simple tonal components to more
complex spectral-temporal structures such as frequency sweeps and
multi-peaked frequency stacks. We quantify spectral and temporal
characteristics of these features by extracting several parameters from
the STRFs. Moreover, we assess the linearity versus nonlinearity of
encoding by quantifying the quality of the predictions of the neural
responses to songs obtained using the STRFs. Our results reveal
successively complex functional stages of song analysis by neurons in
the auditory forebrain. When we map the properties of auditory
forebrain neurons, as characterized by the STRF parameters, onto
conventional anatomical subdivisions of the auditory forebrain, we
find that although some properties are shared across different subre-
gions, the distribution of several parameters is suggestive of hierar-
chical processing.

I N T R O D U C T I O N

To understand how sounds are heard and interpreted and
ultimately influence an organism’s behavior, it is important to
investigate the processing of natural sounds. However, little is
known about the neural encoding of natural sounds. This is
partly because the majority of studies have used synthetic
stimuli such as white noise or tones to characterize auditory
processing (for a review, see Eggermont et al. 1983c). Al-
though these studies have provided a wealth of information on
the organization of the auditory pathway and on the response
characteristics of auditory neurons, it has become increasingly
clear that it is difficult to use this knowledge to predict the

neural responses to complex natural sounds such as vocaliza-
tions (Eggermont et al. 1983b; Theunissen et al. 2000). This is
particularly problematic for characterizing high-level auditory
neurons that may be optimized to analyze natural sounds. An
alternative and more direct approach is to characterize auditory
neurons using these sounds.

Many natural sounds are structurally complex and contain
both spectral and temporal correlations (Attias and Schreiner
1997; Nelken et al. 1999; Theunissen et al. 2000). Until re-
cently, this posed a methodological problem for the systematic
characterization of the stimulus-response function of auditory
neurons with natural sounds. This is because the reverse cor-
relation method that was used to estimate the spectral-temporal
receptive field (STRF) assumed a stimulus ensemble free of
spectral and temporal correlations (Aertsen and Johannesma
1981; Eggermont et al. 1983a). We recently extended the
STRF method to overcome this limitation by taking into ac-
count the spectral and temporal correlations present in the
stimulus ensemble (Theunissen et al. 2000). Our method cor-
rects for the spectral and temporal correlations present in
sounds by performing a weighted average of the stimulus
around each spike using a mathematical operation that involves
a de-correlation in frequency and de-convolution in time. In
this study, we apply this extended method to investigate the
processing of natural sounds in the birdsong system.

The birdsong system offers several advantages for studying
the processing of natural sounds. Songbirds display a remark-
able ability to process auditory information (for a review of the
birdsong system and behavior, see Konishi 1985). At birth,
songbirds are endowed with an inborn behavioral selectivity
for the sounds of their own species (Marler 1991). Auditory
information plays a critical role in song learning in juvenile
songbirds and in song maintenance in adult birds and is an
important component of many social behaviors in songbirds.
For this highly sophisticated behavioral repertoire to be possi-
ble, a wide variety of natural sounds, especially songs, must be
detected anddiscriminated by the auditory system of songbirds.
Currently, theneural basis of these behaviors ispoorly understood.

Anatomical (Fortune and Margoliash 1992; Kelley and Not-
tebohm 1979; Vates et al. 1996) and physiological (Janata and
Margoliash 1999; Langner et al. 1981; Lewicki and Arthur
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1996; Mello and Clayton 1994; Muller and Leppelsack 1985)
experiments suggest that auditory forebrain areas such as field
L may contribute to the ability of songbirds to detect and
discriminate a wide variety of complex natural sounds. In the
anatomical chain of acoustical processing stages of the avian
brain, the field L region lies between the thalamic auditory
relay nucleus ovoidalis (Ov) and higher-level auditory areas
such as HVc and the medial portion of the caudal neostriatum
(NCM) (Vates et al. 1996) (Fig. 1). This location is analogous
to the location of auditory cortex in mammals. As in the
primary auditory areas of many other animals, field L in zebra
finches and other birds displays a tonotopic organization
(Bonke et al. 1979; Gehr et al. 1999; Muller and Leppelsack
1985; Zaretsky and Konishi 1976). Based on Nissl and Golgi
staining studies, the field L region has been divided into 5
subregions called L2a, L2b, L1, L3, and L (Fortune and Mar-
goliash 1992). Neuro-anatomical tracer studies have shown
that the thalamic input from Ov projects strongly to area L2a
and L2b and more weakly to L1 and L3. L2a projects strongly
to L1 and L3, and all field L regions project to cHV (Fig. 1).

In zebra finches, the stages of auditory processing in field L
and other auditory forebrain areas are also likely to contribute
to the response properties of “song-selective” neurons found in
high level auditory areas such as HVc, since these areas are the
primary source of sensory input to HVc. Song-selective neu-
rons, which respond more strongly to the bird’s own song
(BOS) than to even very similar auditory stimuli, have been
well characterized in a number of studies (Margoliash 1983,
1986; Margoliash and Fortune 1992; Mooney 2000; Theunis-
sen and Doupe 1998; Volman 1993). However, the earlier
stages of auditory processing that may participate in the gen-
eration of such highly selective neurons have only begun to be
explored (Janata and Margoliash 1999; Lewicki and Arthur
1996).

So far, a systematic study of the stimulus-response function
of auditory forebrain neurons has not been undertaken with
natural sounds. Thus several interesting questions remain to be
addressed. To what features of natural sounds do auditory
forebrain neurons respond? What are the characteristic spectral
and temporal parameters of such features? Do the distributions
of parameters indicate the emergence of increasingly complex
features in the auditory forebrain? In this paper, we address
these questions by obtaining the STRFs for auditory forebrain
neurons using a large ensemble of conspecific songs (CONs)
and extracting several parameters from the STRFs to assess
multiple aspects of the processing of songs in the auditory
forebrain.

M E T H O D S

Electrophysiology

All physiological recordings were done in urethan-anesthetized
adult male zebra finches in acute experiments. Extracellular wave-
forms were obtained using parylene-coated tungsten electrodes (re-
sistance 1–3 MV) that were inserted into the neostriatum of the bird
at locations that were previously marked with stereotaxic measure-
ments. The extracellular waveforms were transformed into spike
trains, using a window discriminator, by windowing the largest action
potential. Waveforms from successive spikes in the window were
examined on a fast time base to estimate the number of units. Cases
where the waveform had a single reliable and stereotyped spike shape
were classified as single units. Multiunit recordings consisted of spike
waveforms that could be easily distinguished from background activ-
ity but not from each other. Single units (18/62) or small multiunit
clusters consisting of two to five neurons (44/62) were recorded in this
manner. We did not observe any significant differences in our results
for these two groups (seeRESULTS). At the end of the experiment, the
bird was deeply anesthetized and transcardially perfused. The loca-
tions of the recordings were verified histologically in Nissl-stained
brain sections. The location of the sites was classified into anatomical
subregions of field L as described in Fortune and Margoliash (1992).
We considered L and L2b as a single composite region since no clear
border between these two regions was apparent. We will refer to this
composite region as L2b. The data presented here were obtained from
10 birds and 62 recording sites (6 in L2a, 21 in L2b, 13 in L1, 16 in
L3 and 6 in cHV). (For a more detailed description of recording
methods, see Theunissen and Doupe 1998; Theunissen et al. 2000.)

Stimuli

An ensemble of 20 conspecific songs, previously used in Theunis-
sen et al. (2000), was used to obtain neural responses in the auditory
forebrain of each bird. The same set of conspecific songs was used in

FIG. 1. Schematic of auditory forebrain connectivity. The figure illustrates
the source of thalamic input to the auditory forebrain and connections between
the different auditory forebrain region (Vates et al. 1996). Based on Nissl and
Golgi staining studies, the field L region has been divided into five subregions
called L2a, L2b, L1, L3, and L (Fortune and Margoliash 1992). Subregion L2a
receives a strong thalamic projection, whereas subregions L1 and L3 receive
weaker thalamic projections. L2b and L were considered as a composite region
(seeMETHODS). Part of this composite region also receives a strong thalamic
projection. Subregions in field L are reciprocally connected to other subregions
in field L, as shown (7), and to the overlying area cHV. Possible sources of
auditory input to high level area HVc are directly from L1 and L3 through the
underlying shelf region and indirectly from field L through areas caudal
hyperstriatum ventrale (cHV) and nucleus interfacialis (NIf).
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all our experiments. For each bird, we added the BOS to this ensemble
giving a total of 21 songs. Stimuli were played at a peak intensity of
80 dB SPL and randomly interleaved to obtain 10 trials of responses
to each song in the ensemble. The average song duration was 2.1 s. All
of the songs, including BOS, were used to compute robust estimates
of stimulus ensemble properties such as the power spectrum and
autocorrelation matrix, as previously described in Theunissen et al.
(2000). We did not separately characterize the STRFs in response to
the BOS in this study, since a reliable estimate of the STRF (see
following text) requires much more data than we had for the BOS
alone. Moreover, this calculation would also lead to significant meth-
odological difficulties, because the BOS alone samples only a very
small part of stimulus space (Theunissen et al. 2000). To compare the
responses of neurons to BOS versus the other songs in the ensemble,
we used the d9 measure of selectivity, previously used to quantify
song selectivity in other areas of the song system (Janata and Mar-
goliash 1999; Theunissen and Doupe 1998). We did not detect a
difference in response to BOS over the other songs (P 5 0.4, 1 sample
sign test). Our observation is consistent with previous studies, which
have found the majority of field L neurons to be unselective for the
BOS compared with other conspecific songs or manipulations of the
BOS such as reversed BOS and syllable order reversed BOS (Janata
and Margoliash 1999; Lewicki and Arthur 1996).

STRF calculation

A detailed description of the calculation of STRFs from natural
sounds can be found in Theunissen et al. (2000). This is briefly
summarized here. We used an invertible spectrographic representation
of sound in which sound is first decomposed by passing it through a
set of Gaussian filters of 250 Hz width (SD) spanning center frequen-
cies between 250 and 8,000 Hz. The sound is then represented by a set
of functions of times{ i} (t), wheresi(t) is taken to be the log of the
amplitude envelope of the signal in the frequency bandi. The STRF
is defined as the multi-dimensional linear Volterra filterh{ i} (t) such
that

r pre~t! 5 O
i51

nf E hi~t!si~t 2 t!dt

whererpre(t) is the predicted firing rate and nf is the total number of
frequency bands.h{ i} (t) is found by requiring thatrpre(t) be as close to
possible asrest(t), the estimated firing rate obtained from a peristimu-
lus time histogram (PSTH). In the frequency domain, the solution for
the set ofh{ i} for each frequencyw, can be written in vector notation
as

HW w 5 Aw
21 z CW w

whereAw is the stimulus autocorrelation matrix andCw is the cross-
correlation between the spike trains and the stimulus amplitudes in
each band. The normalization of the cross-correlation by the stimulus
autocorrelation matrix corrects for the spectral-temporal correlations
in the stimulus. A detailed description of the numerical parameters
used in our calculations can be found in Theunissen et al. (2000). (For
a recent extension of this method to visual neurons, see Theunissen et
al. 2001.)

To determine the significance of regions in the STRFs obtained, we
used a jackknife resampling method where STRFs were calculated for
multiple subsets of the conspecific song ensemble that were obtained
by deleting one song at a time from the complete ensemble. The
variance for each spectral-temporal bin in the STRF estimate was
calculated from this set of STRFs using the jackknife formula

Var 5
n 2 1

n
O

j
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whereu(j) is the value when thejth song is deleted,u(.) is the average
of all u(j), andn is the number of songs in the ensemble. The standard
error was obtained by taking the square root of the variance.

Figure 2A shows the raw STRF obtained from a site in L2a, and
Fig. 2B shows the jackknife standard error for this STRF.

To display the significant part of the STRF, we first estimated
the noise level in the raw STRFs using a singular value decompo-
sition (SVD) technique. The SVD decomposes the STRF into a
weighted sum of a number of terms, each of which is an outer
product of a function of time and a function of frequency. The
weights corresponding to each of the terms are the singular values
obtained from the SVD. For an ideal, completely noise-free STRF
the nonzero singular values can be used to reconstruct the STRF
without any loss of information. In practice, due to noise in the
estimation of the STRF, the singular values do not drop abruptly to
zero but tail off gradually. We therefore compared the SVD ob-
tained from a window (width, 100 ms) containing all of the
structure in the STRF to the SVD obtained from a window repre-
senting noise (a 100-ms window from the acausal portion of the
STRF corresponding to stimulus following spikes). The singular
values obtained from the raw STRF that exceeded the maximal
singular value obtained from the noise were used to reconstruct the
STRF (Fig. 2). We found that this method effectively filtered out
the noise in the raw STRFs. Then, to illustrate the significance of
the different regions of the STRF, we show the contours for one
and two times the significance level superimposed on these recon-
structed STRFs. As a conservative estimate, we defined the sig-
nificance level to be the maximal jackknife standard error for the
STRF.

Parameters describing STRFs

We obtained several parameters from each STRF characterizing its
temporal and spectral properties. Similar parameters have been ob-
tained from STRFs in the auditory (Depireux et al. 2001; Hermes et
al. 1981, 1982; Keller and Takahashi 2000; Kim and Young 1994) as
well as visual (Cai et al. 1997) domains. The time to peak (Tpeak) was
defined as the time to the absolute maximal value of the STRF. We
also used the STRF to directly estimate the temporal characteristics of
each neuron’s processing of amplitude envelopes of songs. We call
this parameter the best modulation frequency (BMF). To obtain the
BMF, we took a slice through the maximal value of the STRF along
the temporal dimension and obtained the peak of the power spectral
density of this slice (Fig. 6D). The power spectral density was esti-
mated using a fast Fourier transform with a Hanning window. As
defined here, this measure may differ from the conventional BMF,
which is obtained from neural responses to simple amplitude modu-
lated tone bursts, using a range of AM frequencies. To quantify more
spectral characteristics of neural responses, we took a slice through
the maximal value of the STRF along the frequency dimension to
obtain the peak frequency (CF) and a width at half-maximum (W). We
used a quality factor, defined as the peak frequency divided by the
width, Q 5 CF/W, as a measure of sharpness of spectral tuning of the
largest spectral peak. The excitatory and inhibitory peak amplitudes
were the maximal and minimal values of the STRF, respectively.

We also used the SVD of the STRF to assess the degree of the
time-frequency separability of the STRF. Similar methods have been
used in the visual system to describe the space-time inseparability of
the spatio-temporal receptive fields of visual neurons (De Valois and
Cottaris 1998; Jagadeesh et al. 1997; Kontsevich 1995) and the
frequency-time inseparability of auditory neurons (Depireux et al.
2001). By definition, a separable STRF can be expressed as a single
product of a function of time and a function of frequency. Thus for an
ideal separable STRF, only one of the singular values obtained from
the SVD should be nonzero. An index of separability could therefore
be defined as the magnitude of the leading singular value relative to
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the sum of all the singular values. To avoid the effects of the noise tail
in the singular values in assessing the separability of the STRFs, we
defined a separability index SI as follows

SI 5
s1

O
i51

n21

si

wheresi is the ith singular value with all singular values measured
relative to the singular valuesn corresponding to the noise level. We
chosen 5 4 because in all cases the first three singular values
accounted well for the STRF structure.

Prediction of responses

The method for obtaining a prediction of neural responses using the
STRF is described in detail in Theunissen et al. (2000) and only
briefly summarized here. The predicted firing rate was obtained by
convolving the STRF with the stimulus and rectifying and scaling the
result to minimize the squared error between the predicted rate and the
firing rates estimated from the actual data. To obtain the predicted
firing rate for each song, we used the STRF calculated from all songs
in the ensemble except for the song used to generate the stimulus-
response data being tested. We quantified the quality of the prediction
by calculating the cross-correlation coefficient (CC) between the
predicted and estimated firing rates. The measured firing rate was
obtained by smoothing the PSTH (but not the predicted firing rate)
with a Hanning window that gave the maximal CC. We corrected the

CC for bias and obtained the standard error for the CC using a
jackknife resampling method.

R E S U L T S

The goal of this study was to investigate the processing of
natural sounds in the songbird auditory forebrain. We began by
systematically characterizing the stimulus-response function of
auditory forebrain neurons in response to natural sounds. We
obtained STRFs from the responses of auditory forebrain neu-
rons in adult male zebra finches to a large ensemble of zebra
finch songs. These STRFs show the spectral-temporal features
of songs to which auditory forebrain neurons respond and
describe the optimal linear component of the response to songs.
By extracting a variety of parameters from the STRFs, we were
able to quantify several aspects of the processing of natural
sounds in the auditory forebrain. First, we obtained multiple
STRF parameters to describe the spectral and temporal prop-
erties of features important to forebrain auditory neurons.
Second, we characterized the spectral-temporal separability of
the STRFs. Third, we assessed the linearity versus nonlinearity
of the neuronal encoding of songs by quantifying the quality of
response predictions obtained from the STRF model. Finally,
to begin to assess the relationship between functional proper-
ties of auditory forebrain neurons and conventional anatomical
subdivisions of auditory areas, we examined how the STRF
parameters in our data set mapped onto different subregions of
the auditory forebrain.

FIG. 2. Example of a spectral temporal receptive field (STRF) and significance calculation.A: the raw STRF in subregion L2a
(site 14.10; the number before the decimal indicates the bird, and the number after the decimal the neuronal site) obtained from
the neural responses to a large ensemble of conspecific songs.B: the SE of the STRF estimate calculated using a jackknife
resampling method (seeMETHODS). C: the singular values obtained from the STRF (E) and the noise (3; seeMETHODS). D: the STRF
reconstructed using singular values above the noise level shown in the - - - inC (seeMETHODS). To display the level of significance
for the different regions of the STRF, we show the contours corresponding to 1 and 2 times the significance level (- - - and —,
respectively; seeMETHODS for definition) superimposed on the STRFs and plot the regions below significance in lighter colors.
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Neural responses

We obtained neural responses from throughout the auditory
forebrain including subregions L2a, L2b, L1, and L3 of field L
and the overlying region of cHV. Figure 3 illustrates examples
of the trial-by-trial and average neural responses, one from
each of the five subregions. As can be seen, the sites in all
subregions of field L responded strongly to songs. The re-
sponse in the site from cHV was weaker and more variable in
comparison to field L. The average firing rate in the auditory
forebrain was 96 1 (SE) spikes/s.

STRF

Songs have a highly complex spectral-temporal structure
including strong time-varying correlations across different fre-
quencies. Consequently, as illustrated in Fig. 4,A andB, it is
difficult to assess to what spectral-temporal features of songs
neurons respond, simply by comparing the song, in its spec-
trographic representation (Fig. 4B), and the neural response
(Fig. 4A). The STRF method addresses this difficulty by ana-
lyzing the stimulus preceding each neural response, for many
stimuli and many spikes, and calculating what weightings of
the spectral and temporal components of the stimuli produce
the best linear estimate of the actual neural response [for the
mathematical definition of the STRF used in this paper, see
METHODS and Theunissen et al. (2000); for discussions on the
interpretation of the STRF, see Eggermont et al. (1983c); Klein
et al. (2000); Theunissen et al. (2000, 2001)]. The resulting
STRF can be thought of as a filter that characterizes the linear
component of the stimulus-response function of auditory fore-
brain neurons and that can reveal the features of song critical
to the neuronal response. The relationship between the STRF
and the neural response to a particular stimulus can be seen by

sliding a window (Fig. 4B) containing the time-reversed STRF
(Fig. 4C) over the stimulus and obtaining a moment to moment
prediction of the response. In each window, the stimulus is
weighted by the overlapping part of the STRF, point-wise at
the corresponding time and frequency, and the results from all
points in the window are summed to obtain the predicted
response (Fig. 4D). Mathematically, this is performing a con-
volution operation. Intuitively, the time-reversed STRF can
therefore be thought of as the most effective stimulus that
could drive this neuron, if the neuron was completely linear. In
this example drawn from our data from region L2a, the STRF,
which has a relatively simple structure, provides a good pre-
diction of the neural response to a very complex auditory
stimulus (the goodness of the linear STRF model is quantified
and discussed inLinearity versus nonlinearity).

Feature analysis of songs by auditory forebrain neurons

Figure 5 shows 15 examples of STRFs obtained from the
auditory forebrain (3 from each of the different subregions in
field L and cHV), which illustrate the range of STRFs we
observed in our data. As can be seen, the STRFs in Fig. 5,A
andD (subregions L2a and L2b, respectively), indicate sensi-
tivity to a simple, narrowband component of song. In contrast,
much more complex features are observed in some other ex-
amples (Fig. 5,F, I, K, L, andO). For instance, the STRF in
Fig. 5L (subregion L3) shows an excitatory-inhibitory compo-
nent that reverses in time, and the STRF in Fig. 5O (subregion
cHV) shows a multi-peaked frequency stack. Figure 8D (sub-
region L3) shows another STRF with a complex feature, a
frequency sweep. A further observation that can be made from
Fig. 5 is the difference in the time-scales of the STRFs. The
STRF in Fig. 5A from L2a has a short delay and width. In

FIG. 3. Neural responses from the auditory fore-
brain. The figure shows examples of spike rasters and
peristimulus time histograms (PSTHs) of field L and
cHV neurons in response to zebra finch songs. The
oscillograms of the songs, a representation of the
sound pressure level as a function of time, are shown
below the PSTH.Bottom: responses from sites in
subregions L2a (site 21.2, song zfa-24.5) and L2b
(site 20.4, song zfa-25.6) in field L.Middle: re-
sponses from sites in L1 (site 18.6, song zfa-24.5) and
L3 (site 14.12, song zfa-24.5).Top: responses from
region cHV (site 27.2A, song uc-11). The examples
from L2a, L2b, and L1 are data from single units, and
the examples from L3 and cHV are data from small
clusters of neurons (seeMETHODS). We also compared
the mean firing rates across the subregions (although
here a caveat is that our data included both single
units and small clusters of units; seeMETHODS and
RESULTS). Overall, subregions in field L had relatively
high mean firing rates above the background firing
rate, with L2a being the highest (156 4 spikes/s),
followed by subregions L1 (116 4 spikes/s), L2b
(9 6 2 spikes/s), and L3 (86 2 spikes/s). In com-
parison, mean rates were lower in area cHV (36 1
spikes/s). The difference in the mean firing rates
between areas was not statistically significant.
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contrast, the STRFs in Fig. 5,L andO, from L3 and cHV show
longer delays and are extended over much longer durations.
Collectively, these STRFs illustrate the variety of ways in
which songs are analyzed by neurons in the auditory forebrain
and the wide range of time scales associated with this analysis.
In the following sections, we quantify some of these qualitative
observations by examining a variety of parameters describing
different aspects of the STRFs.

STRF parameters

To characterize some of the spectral-temporal properties of
the STRFs and to quantify the differences between the STRFs
in different subregions, we first extracted several simple pa-
rameters from each STRF. Such parameters have previously
been used to characterize the response of auditory neurons to

simple sounds such as white noise or tone pips. However, we
extracted these parameters directly from the STRFs obtained
with natural sounds to quantify several aspects of the process-
ing of these sounds. This was an important step since we had
previously observed that the STRFs obtained from natural
sounds could be dramatically different from the STRFs ob-
tained from simple stimuli for auditory forebrain neurons
(Theunissen et al. 2000).

Figure 6 illustrates the parameters for a particular STRF in
subregion L2a. As illustrated in the figure, the parameters are
obtained from the spectral and temporal slices of the STRF
taken along its maximal value. We obtained the time to peak
(Tpeak), which is a measure of delay between the stimulus and
response (Fig. 6B); the Q factor, defined as the ratio of the best
frequency to the width at half-maximum, which is a measure of
the sharpness of spectral tuning of the largest spectral peak
(Fig. 6C); the BMF, which is defined as the frequency corre-
sponding to the peak of the power spectral density and is a
measure of the frequency of amplitude modulations (AM) in
songs that drive neurons best (Fig. 6D); and the ratio of the
excitatory and inhibitory peak amplitudes of the STRF (see
METHODS for definitions). Figure 5 can be used to illustrate how
the values of these parameters correspond to the particular
STRF from which they were obtained. For example, Fig. 5A
shows an STRF that has a short delay with aTpeak of 11 ms,
whereas the STRF shown in Fig. 5N has a much longer delay
with aTpeakof 55 ms. The STRFs in Fig. 5,A andL, have BMF
values of 70 and 10 Hz, indicating preferences for relatively
high and low modulation frequencies, respectively. An exam-
ple of an STRF that has relatively sharp spectral tuning with a
Q value of 3.2 is shown in Fig. 5B, whereas Fig. 5C shows an
STRF that has a more broadly tuned spectral peak with aQ
value of 0.71.

Figure 7 shows the distribution of these parameters for the
auditory forebrain and quantifies the diversity of processing of
songs in the auditory forebrain, confirming our qualitative
observations in Fig. 5. AlthoughTpeak(Fig. 7A) ranged from 7
to 55 ms, the majority of the sites we examined fell into an
intermediate range, consistent with the location of the auditory
forebrain between the auditory thalamus and HVc. The distri-
bution of the values for BMF (Fig. 7B) shows that the majority
of sites (;90%) in our data set preferred relatively lower
frequency AM in songs (,30 Hz). Almost half the sites in our
data (;48%) had aQ factor close to 1 (between 0.5 and 1.5),
indicating that for many sites the width of the largest spectral
peak of the STRF was comparable to the peak frequency (Fig.
7C; also see Fig. 6 andMETHODS). The ratio of excitatory and
inhibitory peaks of the STRFs (E-I ratio; Fig. 7D) was distrib-
uted around a peak value at 1.3, indicating an approximate
balance between the relative magnitudes of the excitatory and
inhibitory peaks within a range around this value.

Our data consisted of both single units as well as small
clusters of units (seeMETHODS). Although, in theory, if individ-
ual neurons close to each other differed markedly, complex
STRFs could be created simply by the simultaneous recording
of single units with different properties, we saw no evidence
suggesting that this was occurring. The range of complexity of
STRFs from single units was similar to that seen with the small
clusters (examples of STRFs obtained from single units are
shown in Figs. 5,A, D, G, K,andL, and 8A). Moreover, we did
not observe a significant difference between single units and

FIG. 4. Illustration of the STRF model. The STRF can be thought of as a
linear filter that specifies how spectral and temporal components of the stim-
ulus are weighted to produce the response.B shows a spectrographic repre-
sentation of a section of 1 of the songs in our ensemble. A window (shown in
the black rectangle) containing the time-reversed STRF (4C) is slid over the
song. The overlapping parts of the song and the STRF are multiplied point-
wise and summed together to obtain the prediction of the response to the song
(seeMETHODS). The prediction (D; after rectification) can be compared with the
actual response (A) to assess the goodness of the STRF model (see section on
linearity vs. nonlinearity inRESULTS and Fig. 9).
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clusters for any STRF parameter (P 5 0.8 for Tpeak; P 5 0.9
for BMF andQ; P 5 0.5 forE-I ratio; Wilcoxon rank sum test).

Separability versus inseparability

A parameter that describes the complexity of STRFs is the
degree of separability in time and frequency. Separable fea-

tures can be described as a product of a spectral and temporal
function, whereas inseparable features cannot be described in
this simple manner. Using the singular value decomposition
technique (SVD; seeMETHODS and Fig. 2), we analyzed the
separability of song-derived STRFs and defined a separability
index (SI) ranging from 0 to 1, with 1 indicating a fully
separable STRF. We observed both separable and inseparable

FIG. 5. Examples of STRFs from different regions in
the auditory forebrain. 3 examples from each subregion
are shown.A–C: examples from subregion L2a (sites
21.2, 14.11, and 27.4A).D–F: examples from subregion
L2b (sites 20.4, 26.2B, and 23.3B).G–I: examples from
subregion L1 (sites 18.6, 18.7, and 14.9).J–L: examples
from subregion L3 (sites 25.2, 27.5B, and 27.4B).M–O:
examples from subregion cHV (sites 14.2, 27.1A, and
27.2A). The examples inA, D, G, K, and L were from
single units (seeMETHODS). The STRFs display the spec-
tral-temporal features of songs to which auditory fore-
brain neurons respond. This figure illustrates the diverse
range of features to which neurons responded in the
auditory forebrain. These range from simple features
showing narrowband components of song, as in the ex-
amples inA from subregion L2a andD from subregion
L2b, to more complex multi-peaked features as inL from
subregion L3 andO from subregion cHV. The figure also
shows the wide range of time scales of the features that
can be found in the auditory forebrain.
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STRFs in the auditory forebrain. Figure 8A shows an example
of an approximately separable STRF from subregion L2b.
Figure 8B shows the STRF obtained using only the first com-
ponent of the SVD of this STRF, and Fig. 8C shows the
difference between this first component and the full STRF. As
can be seen, the first component accounts for most of the
structure of the full STRF, and thus this STRF is separable.
This STRF had a SI of 0.91. In contrast, Fig. 8,D–F, shows an
example of an inseparable STRF from subregion L3, which
contains a frequency sweep. Unlike the separable STRF in Fig.
8, A–C, the difference (Fig. 8F) between the leading compo-
nent and the full STRF is much larger in this case, and this
STRF had a SI of 0.53. Figure 5,A and K, shows additional
examples of STRFs with relatively high and low separability

indices (SI5 0.82 and 0.52, respectively). Figure 8G shows
the broad distribution of SIs obtained from the auditory fore-
brain for our entire data set. We did not observe a significant
difference between the SI distributions of single units and
small clusters of units in our data (P 5 0.3).

Linearity versus nonlinearity

The STRF is a linear model in that it describes only the
linear component of the neural encoding of the stimulus. Thus
one can use the quality of the predictions of the neuronal
responses obtained from the linear STRF model to assess the
linearity or nonlinearity of the neural encoding of the stimulus.
We used the STRFs to obtain predictions of the neuronal
responses to songs (seeMETHODS) and quantified the quality of
the prediction by the correlation coefficient (CC) between an
estimation of the deterministic part of the actual response and
the response predicted by the STRF (seeMETHODS) (see also
Theunissen et al. 2000). Figure 9A shows the estimated re-
sponse from the actual data (top) and predicted response (bot-
tom) using the STRF shown on the right of the traces, to a
section of the stimulus ensemble for a site in L2a. For this site,
a relatively good prediction could be obtained (CC5 0.68),
indicating that a substantial component of the encoding of this
site was linear. However, this linear component varied over a
wide range for our data set (range of CCs: 0.07–0.72), indi-
cating both relatively linear as well as nonlinear encoding of
songs. Illustrative examples with different values of CC are
shown in Fig. 9,B–E. These examples illustrate the range of
performance of the linear STRF model in being able to predict
the neural response. For example, in Fig. 9,A and B, the
timing and widths as well as the relative amplitudes of the
peaks and troughs in the responses appear to be well predicted.
Figure 9C shows an example where the timing and width of the
responses are still relatively well predicted but the STRF fails
to capture the relative amplitudes of the peaks and troughs in

FIG. 6. Illustration of parameters of the STRFs.A: the
STRF from Fig. 2.B: illustration of the time to peak
(Tpeak) parameter, which was obtained from a slice along
the temporal axis passing through the maximal point of
the STRF.C: illustration of the peak (CF) and width (W)
obtained from a slice along the spectral axis passing
through the maximal point of the STRF. The quality
factor,Q, which is a measure of the sharpness of spectral
tuning, is defined as CF/W. D: the power-spectral density
(PSD) of the temporal slice inB. The frequency corre-
sponding to the peak of the PSD indicated (1) is defined
as the best modulation frequency (BMF).

FIG. 7. Distribution of parameters of the STRFs in the auditory forebrain.
A: distribution ofTpeak. B: distribution of BMF.C: distribution ofQ. D: dis-
tribution of the ratio of excitatory and inhibitory peaks (E-I ratio). See Fig. 6
andMETHODS for definitions of parameters and Table 1 for a summary.
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the response. Figure 9,D andE, illustrates examples where the
STRF makes errors in predicting the timing and width of the
response peaks and troughs as well. Figure 9F shows the
distribution of CCs obtained for our entire data set. A compar-
ison of the distribution of CCs for single units and small
clusters of units did not indicate a significant difference (P 5
0.7). Table 1 summarizes the values of all the parameters we
obtained from the STRFs.

We also investigated whether the parameters obtained from
the STRF were correlated with each other. We examined the
pair-wise scatter plots of the parameters for all pairs (data not
shown), calculated the correlation coefficient between param-
eters and the significance of the correlation coefficient (Fish-
er’s r to z test). We found that many of the parameters were
significantly correlated with each other. These values are sum-
marized in Table 2. In particular,Tpeakand BMF,Tpeakand CC,
BMF and CC, andE-I ratio and CC were strongly correlated.
This suggests that short latency responses, short integration
times, and a preponderance of excitation tended to co-occur
with increased linearity.

Mapping STRF parameters onto anatomical subregions

To begin to investigate the relationship between the func-
tional properties of auditory forebrain neurons, as indicated by
the STRF parameters, and conventional anatomical subdivi-
sions of the auditory forebrain, we compared the STRF param-
eters in our data across the different subregions of the auditory
forebrain: L2a, L2b, L1, L3, and cHV. Figure 10A shows the
mean and the inter-quartile range of values for the parameter

Tpeakacross the different subregions. We observed a significant
difference in the meanTpeakacross the subregions (P 5 0.024,
F 5 3.0, ANOVA, see figure legend for further statistics).Tpeak

was shortest in L2a (meanTpeak5 14 ms) and longest in cHV
(31 ms) with subregions L2b (20 ms), L1 (21 ms), and L3 (22
ms) showing intermediate values. This pattern indicates the
timing for the processing of songs in the different subregions.
On average neurons in the thalamo-recipient area L2a re-
sponded fastest followed by the subsequent areas. The range of
Tpeakin regions L1, L3, and cHV was larger compared with the
range in L2a, indicating a more heterogeneous distribution in
these areas (P 5 0.002, 0.001, and 0.0006 for L2a vs. the other
areas, respectively,F test with Bonferroni correction; see Table
1 for SEs and ranges of values). We did not observe significant
differences in heterogeneity between the remaining areas.

The average values of BMF (Fig. 10B), showed a significant
difference across subregions (P 5 0.006,F 5 4.1). We ob-
served a preference for high modulation frequencies in L2a
(mean BMF5 38 Hz) compared with lower modulation fre-
quencies in L2b (21 Hz), L1 (22 Hz), L3 (15 Hz), and cHV (17
Hz). The inverse of the BMF parameter can be thought of as a
characteristic time scale of integration of songs. The average
values of this parameter indicated a short time scale of inte-
gration for sites in L2a (26 ms), followed by L1 (46 ms) and
L2b (48 ms), cHV (59 ms), and L3 (67 ms).

A comparison of theQ factor (seeMETHODS and Fig. 10C)
did not show a significant difference (P 5 0.17) across subre-
gions. Thus on average the features obtained from the different
subregions were comparable in the sharpness of spectral tuning
of the largest spectral peak (see Table 1).

FIG. 8. Separable and inseparable STRFs.
A: an example of a separable STRF from sub-
region L2b (site 20.8, single unit).B: the sepa-
rable component of the STRF, which is ob-
tained from the leading term in the singular
value decomposition of the STRF and corre-
sponds to the outer product of the function of
time and the function of frequency associated
with the largest singular value (seeMETHODS).
C: the difference between the original and the
separable component is shown. This STRF had
a separability index (SI; seeMETHODS) of 0.91.
D–F: same sequence of plots for an inseparable
STRF from subregion L3 (site 25.8) which had
a SI of 0.53. G: distribution of separability
indices in the auditory forebrain.
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We compared the magnitudes of peak excitatory and inhib-
itory STRF amplitudes in each of the auditory areas. As can be
seen by comparing Fig. 10,E andF, the ratios of the excitatory
to inhibitory peak in the different subregions were approxi-
mately equal (P 5 0.7; see Table 1) even though both the
excitatory and inhibitory amplitudes varied significantly across
the subregions (P 5 0.02).

When we examined the SI for different subregions (Fig.
10D), we found that although the subregions L2b, L1, L3, and

cHV contained the sites that were the most spectral temporally
inseparable, there was no statistically significant difference in
the mean SI across the different subregions (P 5 0.8; see Table
1 for values).

Figure 10G shows the mean values for the CC across the
different subregions. These values indicate a significant differ-
ence across subregions (P 5 0.023,F 5 3.1) with the CCs
being highest in L2a (mean CC5 0.63) and significantly
different from the CCs in all the other regions, followed by L1

FIG. 9. Prediction of neural responses. In the examples
shown, thetop trace illustrates the estimated PSTH for the
neural responses from a site and thebottom traceillustrates the
predicted PSTH obtained from the STRF for this site for the
same segment of the data. The STRF used to obtain the pre-
diction is displayed on the right of each set of traces. One
example from each subregion is shown, spanning a range of
correlation coefficients (CCs) obtained between the actual and
predicted responses for our entire data set.A: example from L2a
(site 26.5A). The scale bar for the time axis in this and all other
traces is 200 ms. The scale bars for the actual and predicted
responses are 200 and 100 Hz, respectively. The CC between
the estimated PSTH and the predicted PSTH for this site was
0.68.B: example from L1 (site 18.6; single unit; scale bars: 100
and 50 Hz) with CC5 0.70.C: example from L2b (site 23.2A;
scale bars: 20 and 10 Hz) with CC5 0.47.D: example from L3
(site 27.5B, single unit, scale bars 20 and 10 Hz) with CC5
0.26.E: example from cHV (site 27.1A, scale bars 5 and 10 Hz)
with CC 5 0.14. F: distribution of CCs in the auditory
forebrain.

TABLE 1. Summary of parameters obtained from STRFs across different subregions

L2a L2b L1 L3 cHV

Tpeak, ms 146 1 (11–16) 206 1 (12–40) 216 3 (12–41) 226 3 (7–50) 316 6 (17–55)
BMF, Hz 386 9 (20–70) 216 2 (10–50) 226 4 (5–50) 156 2 (5–30) 176 4 (5–30)
Q 1.66 0.4 (0.7–3.2) 1.86 0.3 (0.8–5.9) 2.86 0.5 (1.1–6.1) 2.56 0.5 (0.4–7.8) 1.36 0.3 (0.6–2.8)
E-I ratio 1.76 0.1 (1.4–2.1) 1.46 0.1 (0.7–2.6) 1.66 0.2 (0.7–2.5) 1.46 0.1 (0.7–2.3) 1.36 0.2 (0.7–2.3)
SI 0.716 0.03 (0.65–0.82) 0.686 0.03 (0.47–0.91) 0.706 0.03 (0.58–0.91) 0.666 0.03 (0.49–0.83) 0.666 0.04 (0.56–0.84)
CC 0.636 0.02 (0.58–0.68) 0.446 0.04 (0.11–0.70) 0.486 0.05 (0.16–0.72) 0.376 0.05 (0.07–0.64) 0.376 0.06 (0.14–0.53)

The table shows the mean6 SE and ranges (in parentheses) for the parameters: time to peak (Tpeak), best modulation frequency (BMF), quality factor of the
largest spectral peak (Q), the ratio of the excitatory to inhibitory peak (E-I ratio), separability index (SI), and correlation coefficient (CC) between the estimated
response from the actual data and the prediction of the response obtained from the spectral temporal receptive field (STRF; seeMETHODS and RESULTS for
definition of parameters).
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(0.48), L2b (0.44), L3 (0.37), and cHV (0.37). Although the
sample size is small, the range of CCs in L2a was also signif-
icantly smaller compared with L2b, L1, and L3, indicating a
more heterogeneous distribution in these regions (P 5 0.002,
0.004, 0.002, respectively; see Table 1 for ranges). There were
no significant differences in heterogeneity between the regions
L2b, L1, L3, and cHV. These results suggest a difference in the
nonlinear component of the neural encoding of songs in dif-
ferent regions, with region L2a showing relatively linear en-
coding of songs and subsequent areas showing linear as well as
nonlinear encoding of songs.

D I S C U S S I O N

An important goal of auditory neuroscience is to understand
the processing of natural sounds by auditory neurons, which
may have evolved to efficiently encode these sounds (Attias
and Schreiner 1998; Rieke et al. 1995) and which respond
much more strongly to such sounds in higher-level auditory
areas (Margoliash 1983; Rauschecker et al. 1995; Theunissen
et al. 2000; Wang et al. 1995). However, due to the complexity
of natural sounds such as human speech and birdsong, it has
been difficult to obtain the stimulus-response properties of
auditory neurons with such sounds using conventional meth-
ods. Previously, the STRF approach has been successfully
employed to characterize the responses of auditory neurons to
synthetic sounds (deCharms et al. 1998; Depireux et al. 2001;
Eggermont et al. 1983a,c; Escabi et al. 1998; Keller and
Takahashi 2000; Klein et al. 2000; Kowalski et al. 1996a,b). In
this study, we used our recent extension of the STRF approach
(Theunissen and Doupe 1998; Theunissen et al. 2000, 2001) to
analyze the processing of natural sounds in the songbird audi-
tory forebrain.

In the few physiological studies that have been done to date
with small sets of natural vocalizations and complex synthetic
sounds, auditory neurons in field L were found to be quite
diverse, ranging from broadly responsive to selective (Langner
et al. 1981; Muller and Leppelsack 1985; Scheich et al. 1979;
Uno et al. 1991). However, these studies could not identify the
components of the stimuli responsible for the neuronal re-
sponse. Our approach here was to use the extended STRF
method to investigate directly the features of songs to which
auditory forebrain neurons responded.

Our results revealed a diverse range of processing of songs
in the auditory forebrain with some neurons responding to
simple tonal components of songs and others responding to
more complex spectral-temporal structures such as frequency
sweeps and multi-peaked frequency stacks. We quantified mul-
tiple aspects of the processing of songs in the auditory fore-

brain by extracting several parameters from the STRFs. Using
the parameterTpeak, we characterized the timing of responses
in the auditory forebrain. The range of values indicated both
fast and relatively slower processing of song features.

Another important temporal parameter of complex sounds,
such as speech and birdsong, is the modulation in the ampli-
tude envelope of sounds. Complex sounds typically contain a
broad range of modulation frequencies. The BMF parameter,
extracted from the STRF, allowed us to characterize the pre-
ferred modulation frequency for auditory forebrain neurons
and showed that, as a group, auditory forebrain neurons could

FIG. 10. Distribution of STRF parameters for the different regions in the
auditory forebrain. Figure shows the mean values and the inter-quartile range
of values (from the 25th to 75th percentile) of the distribution (1) for different
parameters of the STRF for each subregion (see Fig. 6 andMETHODS for
definitions). The parameters for the respective subregions are plotted in the
order: L2a, L2b, L1, L3, and cHV for all the parameters. The differences in the
mean values of the parameters across different regions were found to be
statistically significant inA, B, andE–G (seeRESULTS). A: Tpeakof the STRF,
which is a measure of the delay between the stimulus and response. Multiple
pair-wise comparisons (post hoc Fisher’s test) indicated the following regions
to be significantly different: L2a/cHV, L2b/cHV, L1/cHV, and L3/cHV.B: the
best modulation frequency (BMF), which is a measure of the preferred fre-
quency of temporal modulations in the amplitude envelope of songs. The
inverse of this frequency is a measure of the characteristic time scale of
integration. The regions that showed pair-wise significant differences were:
L2a/L2b, L2a/L1, L2a/L3, and L2a/cHV.C: the quality factor (Q), which is a
measure of the sharpness of spectral tuning.D: distribution of separability
indices across different regions of the auditory forebrain.E andF: the exci-
tatory and inhibitory peak amplitudes. The regions that showed pair-wise
significant differences for both the excitatory and inhibitory peak amplitudes
were: L1/L2b, L1/L3, and L2a/L3.G: correlation coefficients between pre-
dicted and actual responses across different regions in the auditory forebrain.
The regions that showed a pair-wise significant difference were: L2a/L2b,
L2a/L3, and L2a/cHV.

TABLE 2. Correlations between STRF parameters

BMF Q E-I ratio SI CC

Tpeak 20.46* 0.05 20.37* 20.08 20.44*
BMF 20.25 0.28* 0.25 0.64*
Q 20.09 20.09 20.25
E-I ratio 0.22 0.49*
SI 0.15

The table shows the correlation coefficient between each pair of parameters
for our entire data set. The asterisks indicate the correlation coefficients that
were significant (P , 0.05).
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encode a broad range of AM frequencies. The majority of the
neurons, however, preferred lower modulation frequencies,
approximately matching the dominant range of modulation
frequencies found in songs (Theunissen et al. 2000). By itself,
the value of the BMF does not necessarily imply sharp band-
pass tuning to an AM frequency corresponding to the BMF. It
is, nevertheless, a useful indicator of the AM frequency in
songs that is most effective in driving neurons. In addition, the
value of the BMF parameter obtained here could be different
from the conventional BMF parameter obtained with simple
amplitude modulated tone bursts because, as we found in our
previous study, many auditory forebrain neurons show differ-
ent stimulus-response properties when probed with natural
versus synthetic sounds (Theunissen et al. 2000). The inverse
of the BMF parameter also gave us an indication of the time
scale of integration for auditory forebrain neurons. High-level
auditory neurons displaying context dependent phenomena
such as combination-sensitivity have often been found to inte-
grate their inputs over a relatively long duration (Lewicki and
Arthur 1996; Margoliash 1983; Margoliash and Fortune 1992;
Ohlemiller et al. 1996). In our data, the time scales of the
features to which neurons responded in some of the auditory
forebrain regions were surprisingly long, in some cases show-
ing integration times on the order of 100 ms. Integration of
input over such a long duration could contribute to the known
sensitivity of some field L neurons to combinations of song
syllables as well as to the selectivity for BOS seen in high level
auditory areas (Lewicki and Arthur 1996).

The quality of the predictions of neural responses obtained
from the STRF model, as assessed by the CC, indicated the
presence of both relatively linear as well as more nonlinear
encoding of songs in the auditory forebrain. Here, it is impor-
tant to point out that, although we were able to estimate the
magnitude of the nonlinear component of the stimulus-re-
sponse function by assessing the quality of predictions ob-
tained from the linear STRF model, this model could not
provide any information about the exact nature of the nonlin-
earity. We have previously shown that part of the nonlinearity
across different stimulus ensembles can be described by con-
structing separate STRFs for each stimulus ensemble (Theunis-
sen et al. 2000). This is analogous to constructing a piece-wise
linear approximation of a nonlinear function. However, de-
scribing the residual nonlinearities within a particular stimulus
ensemble remains an important challenge for current methods
in auditory neuroscience. In principle, one could include higher-
order terms in the Volterra expansion describing the stimulus-
response relationship. However, estimating these terms and
interpreting their biophysical significance is quite difficult.
Examination of the linear prediction showed several types of
errors. In some cases, the timing and width of responses was
well predicted but the amplitude was not. In such cases, it may
be possible to improve the prediction by incorporating a static
nonlinearity in the model for predicting responses. In other
cases, errors occurred in predicting the timing and width of
responses as well, suggesting dynamic nonlinearities. Such
nonlinearities could arise from underlying nonlinear cellular
and synaptic processes such as adaptation, facilitation, and
depression. Further elucidation of the nonlinearities may re-
quire modeling them based on a detailed description of such
underlying biophysical mechanisms or developing new meth-
ods that describe such nonlinearities.

The auditory forebrain showed narrowly as well as broadly
tuned STRFs, suggesting that neurons in this region analyze
songs at a variety of spectral resolutions. Analysis over a range
of spectral resolutions is thought to be a prominent principle of
the organization of mammalian auditory cortex as well (Schrei-
ner et al. 2000).

We found that the ratio of the excitatory and inhibitory peaks
of the STRFs was approximately balanced in the auditory
forebrain, which may reflect properties of the local circuitry in
the auditory forebrain. Models of auditory neurons have sug-
gested how neural responses can be shaped by the local exci-
tatory and inhibitory circuitry (Nelken and Young 1997;
Shamma 1989). STRFs with excitatory and inhibitory regions
could be the result of such excitatory and inhibitory interac-
tions. Such a balance of excitatory and inhibitory regions,
organized in an appropriate way in the time-frequency domain,
could result in more temporally phasic and/or more spectrally
selective responses. For example, in cases in which the exci-
tatory region precedes the inhibitory region, response would be
initiated by the activation of the excitatory region but subse-
quently terminated or attenuated by the activation of the in-
hibitory region, thus producing a more temporally phasic re-
sponse. One possible way to directly investigate the relation
between the STRF and the local excitatory and inhibitory
circuitry in the auditory forebrain would be to manipulate the
amounts of inhibition or excitation in these areas and examine
the resultant changes in the STRFs.

We observed both separable and inseparable STRFs in the
auditory forebrain. Neurons with inseparable STRFs could be
used to detect spectral temporal structures of sound that change
with time, such as frequency sweeps, analogous to direction
selective neurons found in the visual system. Such STRFs
might be important in the analysis of songs, since frequency
sweeps are prominent in many zebra finch songs. In the visual
system, a simple model for motion-sensitive neurons was pro-
posed, in which two spatio-temporally separable receptive
fields combine in quadrature to produce a spatio-temporally
inseparable receptive field (Adelson and Bergen 1985; Watson
and Ahumada 1985). In the auditory system, a similar principle
could apply in the spectral-temporal domain. Thus the insep-
arable STRFs found in the auditory forebrain could be gener-
ated by combining inputs from the separable STRFs in the
same or previous regions.

The preceding discussion highlights the diversity of the
auditory forebrain in the distribution of STRF parameters,
reflecting the range of complexity we observed in the STRFs.
In our data, we also observed that some parameters indicative
of more complex processing tended to co-occur. For example,
neurons with long time scales of integration also tended to have
more nonlinear encoding properties, indicating that some neu-
rons found in the auditory forebrain could be jointly complex
in multiple attributes. Thus several functional stages of song
processing, ranging from simple to quite complex, appear to
occur within the auditory forebrain and suggest that the audi-
tory forebrain may be involved in the analysis of many differ-
ent aspects of song structure. The resultant multiple represen-
tations of songs, of varying complexity and time scales, could
together provide useful information to higher level auditory
areas that are likely to be involved in the perception of highly
complex, behaviorally relevant stimuli.
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Mapping STRF parameters

A problem of great interest in the study of auditory systems
has been to understand the organization of auditory maps of
different parameters of sounds. To begin to look for patterns in
the mapping of functional properties of auditory forebrain
neurons onto conventional anatomical subregions of the audi-
tory forebrain, we compared the STRF parameters across the
different subregions. Clearly, more data will be required for a
complete analysis of the different subregions, especially sub-
regions such as L2a and cHV, where we had a relatively small
number of neurons. This is even more important for subregion
cHV, which was quite heterogeneous in the distribution of
STRF parameters, unlike L2a. Nevertheless we observed sev-
eral significant and suggestive trends in our data.

A comparison of the parameterTpeak across the different
regions revealed a significant difference in the timing for the
processing of songs in the auditory forebrain, with L2a re-
sponding fastest, followed by L2b, L1, and L3, and then cHV,
which had the slowest responses of all the areas studied here.
This pattern is consistent with the known anatomical connec-
tivity in the auditory forebrain (see Fig. 1) (see also Vates et al.
1996).

When we compared the time scales of integration in differ-
ent regions of the auditory forebrain, we found that L2a
showed relatively short integration time scales compared with
regions L2b, L1, L3, and cHV. A similar increase in the time
scale of integration, as indicated by the best modulation fre-
quency, has also been observed in successive areas of the
auditory cortex of cats (Schreiner and Urbas 1988).

The quality of the predictions of neural responses obtained
from the STRF model, as assessed by the CC between the
estimated and predicted response, also varied significantly
across the auditory forebrain regions. CCs were highest in area
L2a, followed by L1, L2b, L3, and cHV. This difference is
suggestive of an increase in the nonlinear component of the
neural encoding of songs from L2a to L1, L2b, L3, and cHV,
respectively. Such an increase in nonlinearity could be reflec-
tive of preparatory stages of processing for the generation of
highly nonlinear properties such as BOS selectivity, seen later
in the auditory pathway (Janata and Margoliash 1999; Margo-
liash 1983; Margoliash and Fortune 1992; Theunissen and
Doupe 1998). An increase in the nonlinear component of the
processing of sensory stimuli in successive stages of a sensory
system has also been reported in the electric fish system (Gab-
biani et al. 1996).

The rough mapping of the STRF parameters discussed in the
preceding text onto conventional anatomical subdivisions of
the auditory forebrain is suggestive of hierarchical processing,
with the thalamo-recipient area L2a showing parameters char-
acteristic of simpler processing and subsequent areas revealing
the gradual emergence of more complex processing properties.
However, other observations indicate that the auditory fore-
brain may not be organized in a strictly serial hierarchy. Not all
STRF parameters varied significantly across the different sub-
regions. For instance, the separability index did not reveal a
significant difference among the subregions. It remains possi-
ble, however, that qualitatively different types of inseparability
occur in the different subregions. The subregions also shared
properties such as the sharpness of spectral tuning and the ratio
of excitatory to inhibitory peaks. Thus instead of being orga-

nized in a strictly serial hierarchy, the auditory forebrain may
be organized in a more elaborate way, performing both serial
and parallel processing of auditory information. The known,
extensive interconnectivity between the anatomical subregions
of the auditory forebrain also supports this idea (Vates et al.
1996). Thus the complex processing properties we observed
could arise via a combination of hierarchical and parallel
processing in the network of auditory forebrain subregions.
The intrinsic circuitry within each of the subregions may also
play a role in the emergence of this complexity.

Overall our data are consistent with L2a being the major
input region of the auditory forebrain, responding to relatively
simple features of complex sounds with short delays, short
integration times and more linear processing. Surprisingly, area
L2b often showed complex STRFs, even though it is anatom-
ically described as an early auditory area similar to L2a. There
are several possible explanations for this finding. Although
L2b receives direct thalamic input, the parts of Ov that project
to L2b and L2a are distinct, thus potentially contributing to the
differences in the response properties of these two areas (Vates
et al. 1996). Second, in this study, area L2b was defined to
include area L, thus making it a much larger composite region.
Since the inputs to area L have not been described in detail so
far, it remains possible that the strongest sources of inputs to
parts of this composite region are from other auditory forebrain
regions and not directly from the thalamus, which could lead to
more complex response properties. Our results suggest a grad-
ual emergence of more complex features, longer delays and
integration times, and nonlinear processing properties in the
auditory forebrain subsequent to area L2a. As auditory fore-
brain areas begin to be probed in much more detail it is likely
that additional differences between the subregions of the au-
ditory forebrain will be identified. The stages of processing in
these areas are likely to contribute both to the generation of
song selective neurons found in higher-level areas in the song-
bird brain as well as to the detection and discrimination of a
wide variety of natural sounds behaviorally relevant to song-
birds.

We thank M. Brainard, M. Escabi, and C. Schreiner for comments and
discussion on an earlier version of the manuscript; R. Kimpo, C. Roddey, G.
Carrillo, and A. Arteseros for technical assistance; and two anonymous refer-
ees for critical comments on the manuscript.

This work was supported by research grants from the Alfred P. Sloan
Foundation (to K. Sen, F. E. Theunissen, and A. J. Doupe) and the National
Institute of Neurological Disorders and Stroke (NS-34835 to A. J. Doupe).

REFERENCES

ADELSON EH AND BERGEN JR. Spatiotemporal energy models for the percep-
tion of motion.J Opt Soc Am A2: 284–289, 1985.

AERTSEN AM AND JOHANNESMA PI. The spectro-temporal receptive field. A
functional characteristic of auditory neurons.Biol Cybern 42: 133–143,
1981.

ATTIAS H AND SCHREINERCE. Temporal low-order statistics of natural sounds.
Adv Neural Inform Process9: 27–33, 1997.

ATTIAS H AND SCHREINER CE. Coding of naturalistic stimuli by auditory
midbrain neurons.Adv Neural Inform Process10: 103–109, 1998.

BONKE D, SCHEICH H, AND LANGNER G. Responsiveness of units in the auditory
neostriatum of the guinea fowl (numida meleagris) to species-specific calls
and synthetic stimuli. I. Tonotopy and functional zones of field L.J Comp
Physiol132: 243–255, 1979.

CAI D, DEANGELIS GC, AND FREEMAN RD. Spatiotemporal receptive field
organization in the lateral geniculate nucleus of cats and kittens.J Neuro-
physiol78: 1045–1061, 1997.

1457FEATURE ANALYSIS OF NATURAL SOUNDS

J Neurophysiol• VOL 86 • SEPTEMBER 2001• www.jn.org



DE VALOIS RL AND COTTARIS NP. Inputs to directionally selective simple cells
in macaque striate cortex.Proc Nat Acad Sci USA95: 14488–14493, 1998.

DECHARMS RC, BLAKE DT, AND MERZENICH MM. Optimizing sound features
for cortical neurons [see comments].Science280: 1439–1443, 1998.

DEPIREUX DA, SIMON JZ, KLEIN DJ, AND SHAMMA SA. Spectro-temporal
response field characterization with dynamic ripples in ferret primary audi-
tory cortex.J Neurophysiol85: 1220–1234, 2001.

EGGERMONT JJ, AERTSEN AM, AND JOHANNESMA PI. Quantitative characteri-
sation procedure for auditory neurons based on the spectro-temporal recep-
tive field. Hear Res10: 167–190, 1983a.

EGGERMONTJJ, AERTSENAM, AND JOHANNESMA PI. Prediction of the responses
of auditory neurons in the midbrain of the grass frog based on the spectro-
temporal receptive field.Hear Res10: 191–202, 1983b.

EGGERMONT JJ, JOHANNESMA PM, AND AERTSEN AM. Reverse-correlation
methods in auditory research.Q Rev Biophys16: 341–414, 1983c.

ESCABI MA, SCHREINER CE, AND MILLER LM. Dynamic time-frequency pro-
cessing in the cat midbrain, thalamus, and auditory cortex: spectro-temporal
receptive fields obtained using dynamic ripple stimulation.Soc Neurosci
Abstr 24: 1879, 1998.

FORTUNE ES AND MARGOLIASH D. Cytoarchitectonic organization and mor-
phology of cells of the field L complex in male zebra finches (Taenopygia
guttata). J Comp Neurol325: 388–404, 1992.

GABBIANI F, METZNER W, WESSELR, AND KOCH C. From stimulus encoding to
feature extraction in weakly electric fish [see comments].Nature 384:
564–567, 1996.

GEHR DD, CAPSIUS B, GRABNER P, GAHR M, AND LEPPELSACKHJ. Functional
organisation of the field-L-complex of adult male zebra finches.Neuroreport
10: 375–380, 1999.

HERMES DJ, AERTSEN AM, JOHANNESMA PI, AND EGGERMONT JJ. Spectro-
temporal characteristics of single units in the auditory midbrain of the lightly
anaesthetised grass frog (Rana temporariaL.) investigated with noise stim-
uli. Hear Res5: 147–178, 1981.

HERMES DJ, EGGERMONT JJ, AERTSEN AM, AND JOHANNESMA PI. Spectro-
temporal characteristics of single units in the auditory midbrain of the lightly
anaesthetised grass frog (Rana temporaria L.) investigated with tonal stim-
uli. Hear Res6: 103–126, 1982.

JAGADEESH B, WHEAT HS, KONTSEVICH LL, TYLER CW, AND FERSTER D.
Direction selectivity of synaptic potentials in simple cells of the cat visual
cortex.J Neurophysiol78: 2772–2789, 1997.

JANATA P AND MARGOLIASH D. Gradual emergence of song selectivity in
sensorimotor structures of the male zebra finch song system.J Neurosci19:
5108–5118, 1999.

KELLER CH AND TAKAHASHI TT. Representation of temporal features of
complex sounds by the discharge patterns of neurons in the owl’s inferior
colliculus.J Neurophysiol84: 2638–2650, 2000.

KELLEY DB AND NOTTEBOHM F. Projections of a telencephalic auditory nu-
cleus-field L in the canary.J Comp Neurol183: 455–469, 1979.

KIM PJ AND YOUNG ED. Comparative analysis of spectro-temporal receptive
fields, reverse correlation functions, and frequency tuning curves of audi-
tory-nerve fibers.J Acoust Soc Am95: 410–422, 1994.

KLEIN DJ, DEPIREUXDA, SIMON JZ,AND SHAMMA SA. Robust spectrotemporal
reverse correlation for the auditory system: optimizing stimulus design.
J Comput Neurosci9: 85–111, 2000.

KONISHI M. Birdsong: from behavior to neuron.Annu Rev Neurosci8: 125–
170, 1985.

KONTSEVICH LL. The nature of the inputs to cortical motion detectors.Vision
Res35: 2785–2793, 1995.

KOWALSKI N, DEPIREUXDA, AND SHAMMA SA. Analysis of dynamic spectra in
ferret primary auditory cortex. I. Characteristics of single-unit responses to
moving ripple spectra.J Neurophysiol76: 3503–3523, 1996a.

KOWALSKI N, DEPIREUXDA, AND SHAMMA SA. Analysis of dynamic spectra in
ferret primary auditory cortex. II. Prediction of unit responses to arbitrary
dynamic spectra.J Neurophysiol76: 3524–3534, 1996b.

LANGNER G, BONKE D, AND SCHEICH H. Neuronal discrimination of natural and
synthetic vowels in field L of trained mynah birds.Exp Brain Res43: 11–24,
1981.

LEWICKI MS AND ARTHUR BJ. Hierarchical organization of auditory temporal
context sensitivity.J Neurosci16: 6987–6998, 1996.

MARGOLIASH D. Acoustic parameters underlying the responses of song-specific
neurons in the white-crowned sparrow.J Neurosci3: 1039–1057, 1983.

MARGOLIASH D. Preference for autogenous song by auditory neurons in a song
system nucleus of the white-crowned sparrow.J Neurosci6: 1643–1661,
1986.

MARGOLIASH D AND FORTUNE ES. Temporal and harmonic combination-
sensitive neurons in the zebra finch’s HVc.J Neurosci12: 4309–4326,
1992.

MARLER P. Song-learning behavior: the interface with neuroethology.Trends
Neurosci14: 199–206, 1991.

MELLO CV AND CLAYTON DF. Song-induced ZENK gene expression in audi-
tory pathways of songbird brain and its relation to the song control system.
J Neurosci14: 6652–6666, 1994.

MOONEY R. Different subthreshold mechanisms underlie song selectivity in
identified HVc neurons of the zebra finch.J Neurosci20: 5420–5436, 2000.

MULLER CM AND LEPPELSACKHJ. Feature extraction and tonotopic organiza-
tion in the avian auditory forebrain.Exp Brain Res59: 587–599, 1985.

NELKEN I, ROTMAN Y, AND BAR YOSEF O. Responses of auditory-cortex
neurons to structural features of natural sounds [see comments].Nature397:
154–157, 1999.

NELKEN I AND YOUNG ED. Linear and non-linear spectral integration in type IV
neurons of the dorsal cochlear nucleus. I. Regions of linear interaction.
J Neurophysiol78: 790–799, 1997.

OHLEMILLER KK, K ANWAL JS,AND SUGA N. Facilitative responses to species-
specific calls in cortical FM-FM neurons of the mustached bat.Neuroreport
7: 1749–1755, 1996.

RAUSCHECKER JP, TIAN B, AND HAUSER M. Processing of complex sounds in
the macaque nonprimary auditory cortex.Science268: 111–114, 1995.

RIEKE F, BODNAR DA, AND BIALEK W. Naturalistic stimuli increase the rate and
efficiency of information transmission by primary auditory afferents.Proc R
Soc Lond B Biol Sci262: 259–265, 1995.

SCHEICH H, LANGNER G, AND BONKE D. Responsiveness of units in the auditory
neostriatum of the guinea fowl (numida meleagris) to species-specific calls
and synthetic stimuli. II. Discrimination of Iambus-like calls.J Comp
Physiol132: 257–276, 1979.

SCHREINERCE, READ HL, AND SUTTER ML. Modular organization of frequency
integration in primary auditory cortex.Annu Rev Neurosci23: 501–529,
2000.

SCHREINERCE AND URBAS JV. Representation of amplitude modulation in the
auditory cortex of the cat. II. Comparison between cortical fields.Hear Res
32: 49–63, 1988.

SHAMMA S. Spatial and temporal processing in central auditory networks. In:
Methods in Neuronal Modelling,edited by Koch C and Segev I. Cambridge,
MA: MIT Press, 1989.

THEUNISSEN FE, DAVID SV, SINGH NC, HSU A, VINJE WE, AND GALLANT J.
Estimating spatio-temporal receptive fields of auditory and visual neurons
from their responses to natural stimuli. In:Network: Computation in Neural
Systems.In press.

THEUNISSENFE AND DOUPE AJ. Temporal and spectral sensitivity of complex
auditory neurons in the nucleus HVc of male zebra finches.J Neurosci18:
3786–3802, 1998.

THEUNISSENFE, SEN K, AND DOUPE AJ. Spectral-temporal receptive fields of
nonlinear auditory neurons obtained using natural sounds.J Neurosci20:
2315–2331, 2000.

UNO M, OHNO Y, YAMADA T, AND MIYAMOTO K. Neural coding of speech
sound in the telencephalic auditory area of the mynah bird.J Comp Physiol
169: 231–239, 1991.

VATES GE, BROOME BM, MELLO CV, AND NOTTEBOHM F. Auditory pathways
of caudal telencephalon and their relation to the song system of adult male
zebra finches.J Comp Neurol366: 613–642, 1996.

VOLMAN SF. Development of neural selectivity for birdsong during vocal
learning.J Neurosci13: 4737–4747, 1993.

WANG X, MERZENICH MM, BEITEL R, AND SCHREINERCE. Representation of a
species-specific vocalization in the primary auditory cortex of the common
marmoset: temporal and spectral characteristics.J Neurophysiol74: 2685–
2706, 1995.

WATSON AB AND AHUMADA AJ. Model of human visual-motion sensing.J Opt
Soc Am A2: 322–341, 1985.

ZARETSKY MD AND KONISHI M. Tonotopic organization in the avian telen-
cephalon.Brain Res111: 167–171, 1976.

1458 K. SEN, F. E. THEUNISSEN, AND A. J. DOUPE

J Neurophysiol• VOL 86 • SEPTEMBER 2001• www.jn.org


